7 research outputs found

    The Cognitive Role of the Globus Pallidus interna; Insights from Disease States.

    Get PDF
    The motor symptoms of both Parkinson's disease and focal dystonia arise from dysfunction of the basal ganglia, and are improved by pallidotomy or deep brain stimulation of the Globus Pallidus interna (GPi). However, Parkinson's disease is associated with a greater degree of basal ganglia-dependent learning impairment than dystonia. We attempt to understand this observation in terms of a comparison of the electrophysiology of the output of the basal ganglia between the two conditions. We use the natural experiment offered by Deep Brain Stimulation to compare GPi local field potential responses in subjects with Parkinson's disease compared to subjects with dystonia performing a forced-choice decision-making task with sensory feedback. In dystonic subjects, we found that auditory feedback was associated with the presence of high gamma oscillations nestled on a negative deflection, morphologically similar to sharp wave ripple complexes described in human rhinal cortex. These were not present in Parkinson's disease subjects. The temporal properties of the high gamma burst were modified by incorrect trial performance compared to correct trial performance. Both groups exhibited a robust low frequency response to 'incorrect' trial performance in dominant GPi but not non-dominant GPi at theta frequency. Our results suggest that cellular processes associated with striatum-dependent memory function may be selectively impaired in Parkinson's disease even if dopaminergic drugs are administered, but that error detection mechanisms are preserved

    Serotonin and Dopamine: Unifying Affective, Activational, and Decision Functions

    No full text
    Serotonin, like dopamine (DA), has long been implicated in adaptive behavior, including decision making and reinforcement learning. However, although the two neuromodulators are tightly related and have a similar degree of functional importance, compared with DA, we have a much less specific understanding about the mechanisms by which serotonin affects behavior. Here, we draw on recent work on computational models of dopaminergic function to suggest a framework by which many of the seemingly diverse functions associated with both DA and serotonin—comprising both affective and activational ones, as well as a number of other functions not overtly related to either—can be seen as consequences of a single root mechanism

    Neurogenetics and Pharmacology of Learning, Motivation, and Cognition

    No full text
    Many of the individual differences in cognition, motivation, and learning—and the disruption of these processes in neurological conditions—are influenced by genetic factors. We provide an integrative synthesis across human and animal studies, focusing on a recent spate of evidence implicating a role for genes controlling dopaminergic function in frontostriatal circuitry, including COMT, DARPP-32, DAT1, DRD2, and DRD4. These genetic effects are interpreted within theoretical frameworks developed in the context of the broader cognitive and computational neuroscience literature, constrained by data from pharmacological, neuroimaging, electrophysiological, and patient studies. In this framework, genes modulate the efficacy of particular neural computations, and effects of genetic variation are revealed by assays designed to be maximally sensitive to these computations. We discuss the merits and caveats of this approach and outline a number of novel candidate genes of interest for future study

    Inflammation Effects on Motivation and Motor Activity: Role of Dopamine

    No full text
    corecore